Minimization of DFA

1

Agenda

2

Minimization Algorithm

- Guarantees smallest possible DFA for a given regular language
- o Proof of this fact.

Example one

Example two

Consider the accept states c and g. They are both sinks meaning that any string which ever reaches them is guaranteed to be accepted later.

A: No, they can be unified as illustrated below.

Q: Can any other states be unified because any subsequent string suffixes produce identical results?

A: Yes, b and f. Notice that if you're in b or f then:

- 1. if string ends, reject in both cases
- 2. if next character is 0, forever accept in both cases
- 3. if next character is 1, forever reject in both cases

Intuitively two states are equivalent if all subsequent behavior from those states is the same.

Q: Come up with a formal characterization of state equivalence.

Equivalent States. Definition

9

DEF: Two states q and q' in a DFA $M = (Q, S, d, q_0, F)$ are said to be **equivalent** (or **indistinguishable**) if for all strings $u \in S^*$, the states on which u ends on when read from q and q' are both accept, or both non-accept.

Equivalent states may be glued together without affecting M's behavior.

Finishing the Example

Q: Any other ways to simplify the automaton?

Useless States

(11)

A: Get rid of d.

Getting rid of unreachable *useless states* doesn't affect the accepted language.

Minimization Algorithm. Goals

DEF: An automaton is *irreducible* if

- o it contains no useless states, and
- o no two distinct states are equivalent.

The goal of minimization algorithm is to create irreducible automata from arbitrary ones. Later: remarkably, the algorithm actually produces smallest possible DFA for the given language, hence the name "minimization".

The minimization algorithm *reverses* previous example. Start with least possible number of states, and create new states when forced to.

Explain with a game:

Minimization Algorithm. (Partition Refinement) Code

```
DFA minimize(DFA (Q, S, d, q_0, F))
 remove any state q unreachable from q_0
 Partition P = \{F, Q - F\}
 boolean Consistent = false
 while(Consistent == false)
  Consistent = true
  for (every Set S \in P, char a \in S, Set T \in P)
      Set temp = \{q \in T \mid d(q,a) \in S\}
      if (temp != \emptyset \&\& temp != T)
       Consistent = false
       P = (P - T) \cup \{\text{temp}, T - \text{temp}\}
 return defineMinimizor( (Q, S, d, q_0, F), P)
```

Minimization Algorithm. (Partition Refinement) Code

DFA defineMinimizor

(DFA (
$$Q$$
, S, d, q_0 , F), Partition P)

Set
$$Q' = P$$

State q'_0 = the set in P which contains q_0

$$F' = \{ S \in P \mid S \subseteq F \}$$

for (each $S \in P$, $a \in S$)

define $d'(S,a) = \text{the set } T \in P \text{ which contains}$ the states d'(S,a)

return (Q', S, d', q'_0 , F')

Minimization Example

Minimization Example. Compare

100100101

Minimization Example. Compare 100100101 0,1 0,1

Minimization Example. Compare 10,0100101 0,1 0,1

Minimization Example. Compare 100100101

Minimization Example. Compare 1001,00101 0,1 0,1

Minimization Example. Compare 100100101 0,1 0,1

Minimization Example. Compare 100100101 0,1 0,1

Minimization Example. Compare 1001001,01 0,1 0,1

Minimization Example. Compare 100100101 0,1 0,1

Minimization Example. Compare

100100101

ACCEPTED.

Minimization Example. Compare

10000

REJECT.

