Minimization of DFA

Agenda

- Minimization Algorithm
- Guarantees smallest possible DFA for a given regular language
- Proof of this fact.

Example one

Example two

 (4)

Equivałent States.

Example

Consider the accept states cand g. They are both sinks meaning that any string which ever reaches them is guaranteed to be accepted later.
Q: Do we need both states?
0,1

Equivalent States.

Example

A: No, they can be unified as illustrated below.
Q: Can any other states be unified because any subsequent string suffixes produce identical results?

Equivalent States.

Example

A: Yes, b and f. Notice that if you're in b or f then:

1. if string ends, reject in both cases
2. if next character is 0 , forever accept in both cases
3. if next character is 1 , forever reject in both cases

So unify b with f.

Equivałent States. Example

Intuitively two states are equivalent if all subsequent behavior from those states is the same.
Q: Come up with a formal characterization of state equivalence.

Equivalent States. Definition

DEF: Two states q and q^{\prime} in a DFA $M=(Q$, , $\mathrm{q}_{0}, \mathrm{~F}$) are said to be equivalent (or indistinguishable) if for all strings $u \in *$, the states on which u ends on when read from q and q' are both accept, or both non-accept.
Equivalent states may be glued together without affecting M's behavior.

Finishing the Example

Q: Any other ways to simplify the automaton?

Useless States

A: Get rid of d.
Getting rid of unreachable useless states doesn't affect the accepted language.

Minimization Algorithm.

Goals

DEF: An automaton is irreducible if

- it contains no useless states, and
- no two distinct states are equivalent.

The goal of minimization algorithm is to create irreducible automata from arbitrary ones. Later: remarkably, the algorithm actually produces smallest possible DFA for the given language, hence the name "minimization".
The minimization algorithm reverses previous example. Start with least possible number of states, and create new states when forced to.
Explain with a game:

Minimization Algorithm. (Partition Refinement) Code

DFA minimize(DFA (Q, , , $\left.\mathrm{q}_{0}, \mathrm{~F}\right)$)
remove any state q unreachable from q_{0}
Partition $\mathrm{P}=\{\mathrm{F}, \mathrm{Q}-\mathrm{F}\}$
boolean Consistent $=$ false
while(Consistent ==false)
Consistent = true
for (every Set $S \in P$, char $a \in$, Set $T \in P$)

```
Set temp = {q\inT| (q,a) \inS }
if (temp !=\varnothing && temp !=T )
```

return defineMinimizor($\left(\mathrm{Q}, ~, ~, ~ \mathrm{q}_{0}, ~ \mathrm{~F}\right), \mathrm{P}$)

Minimization Algorithm. (Partition Refinement) Code

DFA defineMinimizor
(DFA (Q, , , $\mathrm{q}_{0}, ~ \mathrm{~F}$), Partition P)
Set $\mathrm{Q}^{\prime}=\mathrm{P}$
State $\mathrm{q}_{0}^{\prime}=$ the set in P which contains q_{0}
$F^{\prime}=\{S \in P \mid S \subseteq F\}$
for (each $\mathrm{S} \in \mathrm{P}, \mathrm{a} \in$)
define ' $(\mathrm{S}, \mathrm{a})=$ the set $\mathrm{T} \in \mathrm{P}$ which contains the states '(S, a)
return (Q^{\prime}, , ', $q_{0}^{\prime}, F^{\prime}$)

Minimization Example

Start with a DFA

Minimization Example

Minimization Example

Minimization Example

Minimization Example

No further splits. HALT!
Start team
contains
original start

Minimization Example.

 End ResultStates of the minimal automata are remaining teams. Edges are
 consolidated across each team. Accept
 states are break-offs from original ACCEPT team.

Minimization Example.
Compare
$\uparrow^{100100101}$
(22)

Minimization Example.
Compare
100100101
(23)

Minimization Example.
Compare

Minimization Example.

Compare

100100101
(25)

Minimization Example.
Compare
100100101
(26)

Minimization Example. Compare

100100101

Minimization Example.
Compare
100100. 101
(2)

Minimization Example.
Compare
100100101
(2)

Minimization Example.
Compare
100100101
(3)

ACCEPTED.

Minimization Example. Compare

\uparrow^{10000}

Minimization Example. Compare

10000

Minimization Example. Compare

10000

Minimization Example. Compare

10000

Minimization Example. Compare

100q0

Minimization Example. Compare

1000%

REJ ECT.

